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We consider the inviscid stability of the Batchelor (1964) vortex in a compressible flow. 
The problem is tackled numerically and also asymptotically, in the limit of large 
(azimuthal and streamwise) wavenumbers, together with large Mach numbers. The 
nature of the solution passes through different regimes as the Mach number increases, 
relative to the wavenumbers. At very high wavenumbers and Mach numbers, the mode 
which is present in the incompressible case ceases to be unstable, whilst a new ‘centre 
mode’ forms, whose stability characteristics are determined primarily by conditions 
close to the vortex axis. We find that generally the flow becomes less unstable as the 
Mach number increases, and that the regime of instability appears generally confined 
to disturbances in a direction counter to the direction of the rotation of the swirl of the 
vortex. 

Throughout the paper comparison is made between our numerical results and results 
obtained from the various asymptotic theories. 

1. Introduction 
In recent years there has been a good deal of interest in the stability of incompressible 

swirling vortex-type flows. Two important applications of this area of research are to 
the breakdown of trailing-line vortices behind aircraft and to tornadoes ; this class of 
flow may also be applicable to flows inside turbines and compressors, to which the 
present work would be particularly relevant. 

The earliest works in the area of the stability of swirling vortex flows include those 
of Lessen & Paillet (1974) and Lessen, Singh & Paillet (1974). In the former paper the 
stability of the Batchelor (1 964) vortex was considered, at finite Reynolds numbers up 
to 150. In the second paper, the inviscid stability of this vortex was studied and revealed 
an increase in growth rate at increasingly large wavenumbers (with disturbances being 
most dangerous counter to the direction of the swirl). 

Duck & Foster (1 980) showed that for a given wavenumber a multiplicity of modes 
exists. Leibovich & Stewartson (1983) and Duck (1986) considered the limit of large 
wavenumber for this problem, and showed that a finite (maximum) growth rate was 
attained. The aforementioned studies suggested an upper and lower neutral value of 
axial wavenumber. The upper neutral point for large azimuthal wavenumber was 
treated by Stewartson & Capell (1985), who showed that the ‘ring mode’ structure of 
the unstable modes persisted near the upper neutral points. Stewartson & Brown 
(1985) considered these upper neutral points for order-one azimuthal wavenumbers, 
and found that in this case modes of centre-mode type could exist, similar to those 

1- Present address : School of Mathematics, University of New South Wales, Australia. 



324 J. A. K.  Stott and P. W. Duck 

found in a related study on swirling Poiseuille flow (Stewartson & Brown 1984). The 
behaviour of the unstable modes, close to the lower neutral point, at large azimuthal 
wavenumber, was investigated by Stewartson & Leibovich (1987), who determined that 
in this case the instability disturbances were centred near the axis of the vortex. 

More recently, viscous results have been presented at finite (but large) Reynolds 
numbers by Khorrami, Malik & Ash (1989) and Khorrami (1991). In this latter paper, 
it was shown that additional unstable modes exist, in which viscosity plays a 
destabilizing role. These modes were analysed using asymptotic methods by Duck & 
Khorrami (1991). The inviscid analysis is also applicable to other vortex profiles, 
including that of Long (1961), as studied by Foster & Duck (1982) and Foster & Smith 
(1989). Regions of instability for both the viscous and inviscid problem have been 
mapped out by Mayer & Powell (1992). 

Little attention has been paid to the stability of compressible vortex flows of this 
type, even though we know from experiments that velocities are often higher in the core 
than in the free stream, so compressibility could strongly affect the character of the 
vortex, even at subsonic flight Mach numbers. On the other hand the area of 
compressible jet flow has been investigated for some years now, the work of Michalke 
(1971, 1984) being relevant here, although restricted to non-swirling flows. Com- 
pressible swirling jet flows have also received some attention; the work of Coleman 
(1989) should be mentioned, who studied the superposition of a Rankine vortex on a 
top-hat jet velocity field. More recently, Khorrami (1991) studied a compressible 
swirling axisymmetric jet, by assuming that the incompressible flow of Gortler (1954) 
and Loitsyanskii (1953) was applicable in the compressible regime. 

In this paper, we take cylindrical polar coordinates, (Zx, It, O),  with the x-axis lying 
along the axis of the vortex (which is taken to be axisymmetric), where 1 is some 
streamwise scale. We also take the flow far from the vortex centre to be directed along 
the x-direction. The velocity field is written as U: u = U:(u, u, w) ,  the fluid density is 
pz p ,  temperature TZ T, first and second coefficients of viscosity ,L& p, p: h respectively, 
and pressure pz U:2p. Here a superscript asterisk and a subscript 00 denote dimensional 
and free-stream variables, respectively, and U: is a velocity scale, defined below in 
(2.6), whilst UZ is the free-stream velocity. We define the flow Reynolds number 

and we have a flow Mach number given by 

where y is the ratio of specific heats and R* the gas constant. We also define the Prandtl 
number to be 

(1.3) 

where K* is the thermal conductivity of the fluid. 

written 
The non-dimensional equations of continuity, momentum and energy may then be 

(1.4) 
3P -+V. (pu)  = 0, 
at 
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Du 1 
Dt Re Re 

p-= -vp-- v A b(v A U)] 4- - v [ ( A  4- 2p) v - U], 

p-=--+@ + __ V * (,uV T ) ,  Dh Dp 
Dt Dt aRe 

where h is the enthalpy of the fluid, and @ is the viscous dissipation. We also assume 
a perfect gas, in which case we have 

In the following sections we consider first the basic flow ($2), and derive an asymptotic 
solution of the above equations of continuity, momentum and energy, valid for large 
Mach numbers. In $ 3  we consider the inviscid linear stability equations. In $4 we 
present a number of numerical results, guided by which, in $5 we develop asymptotic 
results for large axial and azimuthal wavenumbers; throughout this section we 
emphasize a comparison between our numerical and asymptotic results. In $6 a new 
class of mode, which is found to develop at sufficiently large Mach number, is 
considered. In $7 we present a number of conclusions arising from this work. 

2. The basic flow 
Let us consider the solution corresponding to Batchelors’ (1964) similarity solution 

for a swirling wake flow, equivalent to a far downstream limit ( x  9 1) of the governing 
equations. We thus suppose that the solution comprises a uniform (free-stream) flow 
plus a relatively small steady perturbation, i.e. 

T T* 
(2.1 a-c) 

(2.1 d-f) 

The solution develops in much the same way as the incompressible case of Batchelor 
(1964) and it is found to leading order (i.e. neglecting tilde-squared terms) that 

u” = 0, (2.3) 

where rj = PRe,/4x, 

c; u: LU22 u,* = log (xRe,) + 
8xvL2Re, 8xvz2Re, ’ 

and 

C, and L are constants and Re, is the free-stream Reynolds number defined by 

Q,(q) = e-9, Qz(y) = eC[log 7 + ei(7) - 0.8671 + 2ei(7). (2.7a, b) 

Re, = p: Uz l/,uz. (2.8) 



326 J.  A .  K. Stott and P. W. Duck 

To the order that we are working it is admissible to take the viscosities and Prandtl 
number as constants, although any higher-order theories would require taking 
variations of these quantities into account. We find that 

whilst the temperature perturbation is governed by the following equation : 

The general solution of this is given by 

(2.1 1) 

where A and B are constants (which we tacitly take to be order-one quantities), which 
depend on the history of the flow, < = 27;, ei(z) and erf(z) are the exponential integral 
and the error function, respectively, defined in the normal manner, and M ,  is the free- 
stream Mach number defined by 

(2.12) 

Note that we expect M ,  $ M .  We also find it useful for the remainder of the paper to 

(2.13) 
define the lengthscale 

where r,  = (4x/Re,)a is the characteristic radial lengthscale. 

r = y f =  y"lrs, 

In the following section we consider the inviscid stability equations. 

3. The stability equations 

p = po(r) and consider small-amplitude perturbations to this flow; we write 
We take the general basic state to be u = t i(r) ,  u = 0, w = W(r), T = q(r ) ,  p = po(r), 

u = U(r) + SF(r) E +  O(S2), v = ih'G(r) E+ O(S2), 

T = &(r) + &(r) E+ O(S2), p = po(r) + ST(r) E +  O(S2), 

w = W(r) + SH(r) E+ O(S2), 
(3.1 e c )  

p = po(r) + SP(r) E+ O(S2), 
(3.1 d-f') 

where S -g 1 and 
E = exp [i(ax/r, + n8 - olct/r,)]. (3.lg) 
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The governing stability equations, neglecting the effects of viscosity are then 

yM2P = rT, + rpo, 

# = a( U- c) + n W/r,  
where we have written 

and primes denote differentiation with respect to r .  Note that (3.1), and (3.2H3.7) all 
implicitly assume that the axial scale for the perturbation quantities is considerably 
shorter than any developmental lengthscale for the basic flow, as is the case if r, 4 1. 

Equations (3.2H3.7) may be combined to yield the following two first-order 
equations : 

(3.9) 
dG n(rW)'+ar2U' 

dr r2d 
-=[ G+- 

These equations are somewhat similar to those considered by Michalke (1971), in the 
context of jet flows, if the swirl velocity is neglected. 

Let us now consider the specific basic flow of the trailing-line vortex, as discussed in 
the previous section. Equations (2.1) and (2.3)-(2.5) may be substituted into (3.9), 
(3.10). If we then assume 181 < I(l/x)logxl, use the fact that a simple transformation 
and inversion of the axial velocity only affects the frequency of the stability analysis, 
and does not change the amplification factor ci (where c = c, + ic,) and note that p", p" 
and are an order of O(1ogx) smaller than u" and @, then in terms of the similarity 
variable defined by (2.12), the basic flow may be taken to be 

(3.11 a-c) u = e-rP, w = -(I 9 -e-,'), v = 0, 
r 

Po = 1, Po = l / yM2 ,  T, = 1 ,  (3.12 a-c) 

where q is an order-one (swirl) parameter, and we have effectively scaled velocities with 
respect to U,*. 

Equations (3.9) and (3.10) reduce to 

d P  
dr 

(3.13) 

(3.14) 
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The boundary conditions to be applied are then 
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(3.15) 

P(0) = 0, n =+ 0; P‘(0) = 0, n = 0, 

G(0) = 0, =+ 1; G(0) = 0, 1111 = 1, 

G(r), P(r) bounded as r + cx . and 

Equations (3.1 3) and (3.14) may be combined to eliminate G, yielding the following 
second-order equation for P :  

1 [ar*U’+n(rW)’] 

+(-- r r24 
(3.16) 

Setting M = 0 clearly reduces (3.13), (3.14) and (3.16) to the incompressible problem, 
as considered by Lessen et al. (1974), Duck & Foster (1980), Leibovich & Stewartson 
(1983) and Duck (1986). It is also possible to be rather more precise regarding the 
behaviour of the solution as r +  co; this takes the form 

dG 
-+a( 1 - c2M2);G = 0, 
dr - 

dP 
dr - 
- + a( 1 - C2MZ)tP = 0, 

(3.17) 

(3.18) 

where positive signs are taken for Re ((1 - c2M2)i} > 0, and vice versa, to ensure 
boundedness as r + 00. 

The ‘ order-one’ problem requires a fully numerical solution, which we consider in 
the following section, prior to considering various asymptotic limits of this system of 
equations, which permit some analytical progress. 

4. Numerical results 
The system was treated numerically using four different techniques. The first was 

based on the method of Duck & Foster (1980), in which the system (3.16) was 
approximated by second-order central differences, with conditions (3.17) and (3.18) 
imposed at a finite radial value r = rmas, taken sufficiently large not to substantially 
affect the result. The determinant of the system was then forced to zero by adjusting 
the complex wave speed c (using Newton iteration). 

The second method was based on a fourth-order Runge-Kutta scheme; conditions 
(3.17) and (3.18) were approximated by imposing boundary conditions at a finite radial 
value r = rmaz, where this value was again taken sufficiently large to not substantially 
affect the numerical results. The computations were performed by shooting the 
solution towards r = 0 and were not necessarily confined to the real r-axis. The value 
of c was adjusted (again using Newton iteration), to ensure the correct behaviour of the 
solution as r + 0. 

The third method used was based on the first, but was a global finite difference 
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method. Using this finite-difference scheme, then by defining two additional quantities 
G = cG,F = cP at each grid point, it is possible to write the resulting scheme in the 
form 

(A-cB)x = 0, (4.1) 

where 

and [I' denotes the transpose of a vector. This scheme has the obvious advantage 
of generating 4 N  eigenvalues (where N is the number of grid points), simultaneously. 
The principle disadvantages are: (i) it is not possible to use (3.17) or (3.18) because of 
the nonlinearity of c, and consequently Dirichlet boundary conditions were applied 
instead at the outer edge of the computational domain; and (ii) the scheme requires 
rapidly increasing computational resources (both in storage and time) as N increases. 

The fourth scheme implemented was a Chebyshev spectral collocation scheme, based 
on that of Khorrami et al. (1989). This was a global method, which generally gave very 
accurate eigenvalues, but also yielded a large number of spurious eigenvalues, a feature 
found in many spectral schemes. 

The first (finite-difference) scheme was quick and robust, but because of its 'local' 
nature, mode jumping was often experienced due to the frequent close proximity of 
neighbouring modes, as discussed later in the paper. The second (Runge-Kutta) 
scheme was also quite fast, and had the advantage of being able to compute neutral and 
near-neutral modes (and even stable modes) by contour indentation, but again because 
it involved local searching was prone to mode jumping. The third scheme, namely the 
global finite-difference scheme, which proved to be very robust, produced few, if any 
spurious (i.e. non-physical) modes, and generated many eigenvalues simultaneously 
because of its global nature. Consequently our results were generally computed using 
the first scheme with the third scheme used to obtain approximate values for the 
eigenvalues, and to check on mode existence and ordering. 

We now present a few numerical results to give some indication of the effects of 
variation of certain of the important parameters. Here, and indeed in all our 
calculations we chose y = 1.4, q = 0.8. Further, we generally found that rmaz = 10 was 
more than sufficient for graphical accuracy, with Ar = 0.00625. 

Figure 1 (a-c) shows the variation of growth rate (ac,) with a for the case M = 3, with 
n = - 1, -2, -3 respectively. These results (and all those presented in this paper) are 
accurate to within the graphical accuracy of the figures. Because of the great 
multiplicity of these modes, we show just the first few (is. most unstable) modes. From 
the outset it should be stated that all our results relate to negative values of n ;  in 
general, we believe that instabilities are almost exclusively confined to this region of 
parameter space, with perhaps a few minor exceptions. (Lessen et al. 1974 have 
presented a few incompressible results for n = + 1, for very small swirl parameters.) We 
certainly expect the largest growth rates to be confined to the negative values of n. 

We see in figure 1 (and in other computed results, not presented here) the following 
general trends: (i) an increase in growth rates as -n increases; (ii) an apparent cut-off 
value of a above which no unstable modes exist; (iii) a tendency for the maximum 
growth rate to be attained at an increasing value of a as -n is increased; (iv) many 
modes of instability. We also note that there are instances where the growth rate which 
is not the least stable mode, locally exceeds that of a globally more unstable mode 
(particularly as a approaches the neutral points). This implies a number of mode 
crossings; this type of behaviour is rarely seen in incompressible studies, and serves to 
further complicate the computation of such modes. 

In figure 2(a-e) growth rates for the case M = 5 with n = - 1, -2, - 3 ,  -4, - 5 
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FIGURE 1. Variation of growth rate with CL for M = 3: (a) n = - 1, (b) n = -2 ,  (c) n = -3.  

respectively are presented. The trends (i)-(iv) described above are again observed, 
together with the result that for corresponding n and a the growth rates of M = 5 are 
substantially reduced compared to M = 3. Further the upper limit of a of the 
instability appears to be quite independent of M ,  and $6 confirms this observation. 

These results suggest a number of interesting features, and in the following sections 
we mount a systematic study for increasing M ,  when ( -n)  $- 1. 
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FIGURE 2. Variation of growth rate with a for M = 5 :  (a) n = - 1, (b) n = -2, (c) n = - 3, 
(d )  n = -4, (e) n = - 5 .  
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5. Asymptotic results, --n %- 1 
5.1. M =  O(1) 

It turns out that for this order of Mach number, to the orders to which we concern 
ourselves, the solution (in particular for the complex wave speed) remains unchanged 
from the - n  9 1 solution of the incompressible case, as considered by Leibovich & 
Stewartson (1983) and Duck (1 986). However, since this solution forms a basis for the 
following subsections, we outline, briefly, the form of the structure in this case; full 
details can be found in the aforementioned papers. We have that 

a = nb ,  b = 0(1), (5.1) 

and the complex wave speed develops as 

Then generally 

where $,, = b( U(r) - co) + W(r)/r. (5.4) 

However, the solution is found to be concentrated about points Y = Y,, (critical points) 
where 

(5.5) 

$;(Yo) = 0, (5.6) 

i.e. bU’(ro) + (W/r); = 0 (5.7) 

Q o ( Y  = Yo) = 0. 

It turns out that ro must in fact also be a turning point, and so 

(where a subscript zero here and hereafter denotes evaluation at Y = ro). Equation (5.7) 
then serves to determine yo, and hence c,, may be determined from (5.5). The key 
lengthscale in the neighbourhood of the critical layer is given by 

R = (Y - ro)lnla, 
and then on this scale 

where 

sign (n) Q = 9 1 - 7  { - dc, + ig5,”(v0) R2)  + O(ni’), (5.9) 

= -Eel, (5.10) 

(5.1 1 )  
d2 

$ 3 0 )  = p [$o(r)lr=r,. 

For consistency it was shown by Leibovich & Stewartson (1983) and Duck (1986) that 

Further, on the R = O(1) scale the eigenfunctions scale as 

(5.12) 

P =  P +  ..., G = nG+ ..., (5.13a, b) 
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FIGURE 3. Variation of growth rate with a: computed most dangerous modes for M = 3, 
n = - 1 to - 10. 

and then I'(R) is described by 

or 

)] P = 0, 
c, 2EC1 

where we have written E = 1/2Ai R, with 

(1 + z2r:) -4 $w,> and A, = 
2 

A, = -sign (n)  
Cl r: 2 E  

(5.14) 

(5.15) 

(5.16) 

Equation (5.15) has a solution which may be written in terms of Weber parabolic 
cylinder functions, D,(Q, and so if we demand that the solution decays as 151 + 03,  then 
m must be an integer, yielding the following result for c,: 

(5.17) 

Figure 3 shows the variation of growth rates for A4 = 3, for n = - 1 (the least-unstable 
mode shown) up to n = - 10 (the most unstable mode shown) as computed for the full 
system; in all cases the most unstable mode for each value of n is shown. Using the 
asymptotic results above, we show the corresponding results in figure 4 (in particular 
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FIGURE 4. Variation of growth rate with a: asymptotic most dangerous modes using $5.1 results 
f o r M = 3 , n = - l  to -10. 

we set m = 0 in (5.17)). The comparison between figures 3 and 4 reveals good 
agreement in the growth rates at larger values of - n, although at smaller values of - n, 
comparison is less good than the comparison of incompressible numerical and 
asymptotic results. This less satisfactory agreement may be attributed directly to the 
effects of compressibility, but for In1 sufficiently large, the asymptotic results presented 
in this subsection are ultimately approached. 

In the following subsection we begin to incorporate compressibility into our 
asymptotic description. 

5.2. M = O(ln1ij 
The key equation (5.14) was obtained by taking the O(ln1;) terms in (3.16). If In1 % 1, 
and we now permit M to grow in magnitude, additional terms will ultimately enter 
(5.14) when 

(5.18) 

when the coefficient of P will include the effects of compressibility. The modified 
equation is then 

(5.19) 

All other quantities (specifically co and c,) remain unchanged from those evaluated 
previously. This equation may be transformed to the same form as (5.15), namely 

%-{:P+( 4i c, + 4 )}P,  0, 
2(h1 jJ 

(5.20) 
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FIGURE 5. Variationlof (a) growth rate c,, and (6) c,, with a, for n = - 5, - 10, - 15, 
M = In[x: ----, numerical results; -, asymptotic results. 

where A, and A, are given by (5.16), whilst 

Consequently, using our previous arguments 

(5.21) 

(5.22) 

Figure 5 (a) shows a comparison of ‘exact’ growth rates (obtained using the numerical 
approach of $4), shown as a broken line, with the asymptotic results of this subsection; 
here, the chosen values of n are -5, - 10 and - 15 and we set M = i.e. A4 = 1 in 
each case. The agreement is satisfactory, and improves as n increases. Figure 5(b) 
shows the corresponding comparison for c,; in this case the agreement is excellent. 

5.3. M =  o(lnli) 
As A4 (and hence &?) increase in magnitude, the ‘ A ,  component’ of c, increases (as 
&f2) and becomes sufficiently larger than the ‘ A ,  component’. Simultaneously, the 
coefficient of P, in (3.16) will grow, and further terms in the coefficient of P will become 
significant. The next important regime for A4 is when 

M = InIiG, A? = o(I). (5.23) 

Although the key radial scale remains R = O(1) (see (5.8)),  the series development of 
c and #(R) is now altered, and is instead 

I 

(5.24) 
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and therefore 

1 1 
= - gel -- EC, sign (n) + { - EL-% sign (n)  + i+i(ro) R2} + . . . . 

InIz InP 
(5.25) 

Considering O(ln1;) quantities in (3.16) requires that the sum of these terms is zero, and 
so this leads to 

1- (5.26) 

The equation for F(R) is again obtained by taking the O(ln1;) terms in (3.16), namely 

Using the standard transformation 

or 

where 

Since (5.30) is again a form of Weber’s equation, then 

(5.28) 

(5.30) 

(5.31) 

(5.32) 

Figure 6(a) shows a comparison of asymptotic results (solid line_s) with numerical 
results (broken line), for n = - 5 ,  - 10, - 15 with M = lnli (i.e. & = 1). Again the 
comparison becomes markedly better as In[ increases. The corresponding distribution 
of c, is again good, and shown in figure 6(b) .  

5.4. M = O<1n1+) 
In this case it is quite clear from the previous subsection that when fi = O(lnli), then 
the c2 term (see (5.26)), which grows as willbecome comparable in magnitude to 
the & e m  i%volving c1 (which is independent of M ) ;  in addition to this, since c3 grows 
as M 4  as +f increases, then this term will also become comparable to the c1 term when 
M = O(ln15). In this case, it is straightforward to show that R = O(1) remains the 
appropriate radial scale, whilst the wave speed expands as follows : 

- 

c1 c2 c = c 0 + - + 7 +  ..., 
Inla 

(5.33) 
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FIGURE 6. Variation of (a) growth rate ci, and (b) c, with a, for n = - 5 ,  - 10, - 15, M = In\;. 

implying $4 = q 5 1 + - 7 + . . .  9 2  . (5.34) 
lnlz 

If we write 
(5.35) 

then the equation for P(R) is 

+ sign (n) ((rW)'+ "' ") (?) A?W' &+ $2 2 (-1 1 +&: (--) (WzrZ); &]} cj2 a = 0. (5.36) 

(5.37) 

r: $1 rt$1 ri91 

P(R) = P*(R) exp [+(lnliLi2 W: R / ~ ~ ) I ,  

Again using a standard transformation of the form 

leads to the differential equation 

y: 91 

1 +a2r; (W2r2); q52 
-+2 ~ + sign (n) ( (rW)'+Er'u')(T)$: APW; ( )(-)&]}F* = 0. (5.38) 

T i  91 riq51 441 
If our assumption regarding the importance of the R = O(1) scale is to be consistent 
(although see the comments below regarding R = O(ln14)) then the coefficient involving 
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FIGURE 7. Variation of (a) growth rate c ~ ,  and (b) c,, with LX, for n = -5, - 10, - 15, M = In\+. 

Inl: above must be zero. (This is also consistent with the previous smaller orders of 
Mach number considered previously.) This leads to 

c, = 7 (5.39) 

where cpc denotes the incompressible value of c,, given by (5.12). The equation that 
determines F(R) is then 

F* = 0, (5.40) 

(5.41) 

+ sign (n)  ~ 

or symbolically PgR - [il R2+ io c,] = P* = 0, 
and using previous arguments, we must have 

(5.42) c2 = - (h,)2(l+ 2m)/h,, m = 0, 1,2,. . . . 
Note that although the transformation (5.37) suggests growth as R+ co, this is more 
than offset by the decay of the parabolic cylinder functions, albeit on a larger 
lengthscale R = O(ln1;). Note too that the transformation (5.37) is consistent with that 
used previously, namely (5.28). 

Figure 7(u) shows a comparison between the above asymptotic results (solid line) 
and the ‘exact’ numerical results (broken line), for the most unstable growth rates 
when n = - 5 ,  - 10, - 15 ( M  = Inis, i.e. 2 = 1 in all cases). Again the agreement is 
seen to improve as -n increases. Figure 7(b)  shows a comparison between the 
corresponding c,, for the above cases and indicates good agreement between our 
asymptotic and numerical results. 

” 1  
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FIGURE 8. Variation of growth rate with M (first 6 modes) using $5.4 results: (a) n = -5, a = 2.5; 
(b )  n = - 10, a = 5 ;  (c)  n = - 15, a = 7.5. 

It turns out, however, that this order of M marks a watershed. When i@ is not large, 
both roots of must be complex (and from our previous discussions the flow is 
unstable). As M increases, however, eventually terms inside the square-root term in 
(5.39) will become positive, and hence the two roots of c, will cease to be camplex- 
conjugate pairs, but will both become real. In particular, this will occur when 

(5.43) 
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To illustrate the stabilization of these modes, in figure 8 (a-c) we show the variation of 
the growth rates with M for the cases n = - 5 and a = 2.5, n = - 10 and a = 5 ,  
n = - 15 and a = 7.5 respectively. We clearly see these modes becoming neutrally 
stable at finite values of M. For comparison, in figure 9 ( a c )  (corresponding to figure 
8 a-c respectively) we show the corresponding results from solutions of the full system 
(3.11) and (3.12). At the lower values of M ,  there is good correlation between the two 
sets of results. However, as the Mach number increases, and as the order of the modes 
(i.e. m) increases, the correlation deteriorates. We consider this latter point first by 
examining the behaviour of the higher-order modes. 

5.5. The structure when m = O(lnf), ( M  = O(ln1;)) 
One detail that has not been considered so far is the behaviour of the modes as m, the 
index of the Weber function, increases. This feature was considered by Duck (1986), 
and we consider this aspect here for the important case when M = O(ln1;). c develops 
in the same manner as in the previous subsection, and close to the critical layer q5 takes 
the form 

1 
(5.44) $ = $ 1 + 7 q 5 2 + . . .  . 

InP 

c,, remains unchanged from that given previously; however c1 will differ. In this case, 
we consider the lengthscale 

and so on this scale 

- 
R = (r - ro)lnl; = O( 1), (5.45) 

I --- - ac, + f sign (n) $i(r,) R2, (5.46) 

$2 =-tic,+- sign (n) $r(r,,) k3 
3! 

(5.47) 

Substitution of these expansions into our governing equation gives, to leading order, 
an eigenfunction equation of the form 

PEE+ ql(@ PR + Inlq,(i) P = 0. (5.48) 

Using the standard transformation 

P ( j )  = P*(l?)exp[ -; /q , ( i?)dk] ,  (5.49) 

we obtain P3a+[Inlq,-fq1ri.-+&] P* = 0. (5.50) 

However, since In1 is large, (5.50) may be approximated by 

P Z R +  Inlq, P* = 0, 
where 

(5.51) 

1 
q2 = - - [4r, W: + (1 + 2%;) (r: - ( W2r2)k) 

r: 4; 
-sign(n)2Wiri k2q$ + + k 4 W ;  q5; r;]. (5.52) 

Thus (5.50) may be written as 

(5.53) 
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with (5.54) 

(5.55) 

(5.56) 

(5.57) 

h2 = In(. (5.58) 

Equation (5.53) is now in a form suitable for a WKBJ type of approximation. This 
equation has four turning points; however for the range of [required we need consider 
only the turning points at 

- [ 1rl 4 g  I; [=* ---+- - +- - 1 .  
2Y 2 v2 

For large h the WKBJ solution is given by 

where 

P - q 4 A,  exp (ihq": d o  + A ,  exp s - (ihqa do], 
* - --I s 

(5.59) 

(5.60) 

(5.61) 

The treatment near the turning points is standard (see for example Duck 1986) and 
leads to the following dispersion relationship for c,  : 

Ih = -$c(1+2m), m = 0,1,2, ..., 
where 

(5.62) 

1 

i[(y2/v2) + (4p/v)]i' 
g =  

g1 = 1/29 
k = g( - (7/2v) +;gl - l)t, 

(5.64) 

(5.65) 

(5.66) 
(5.67) 

(5.68) 

Here, F($, k), E($, k),  n($c7 2, k)  denote complete elliptic integrals of the first, second 
and third kinds respectively. 
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FIGURE 10. Variation of growth rate with M (first 6 modes) using $5.5 results: (a) n = -5 ,  
a = 2.5; (6) n = - 10, a = 5 ;  (c) n = - 15, a = 7.5. 

The system (5.62) was solved using Newton iteration, and results for variations of 
growth rate with M were computed for rn = 0, 1 ,2 ,3 ,4 ,5  for the cases n = - 5 ,  01 = 2.5 
(figure 10a), n -  10, 01 = 5 (figure lob),  n = - 15, a = 7.5 (figure 1 0 ~ ) .  The modified 
theory of this subsection does indicate some important improvement in the comparison 
with figure 9 ;  in particular the ‘bunching up’ of the modes with an increase in order 
is captured. However, although for n = - 15 there is quite good correlation for the 
lower-order modes, as m increases the various wiggles observed in figure 9 are not 
described, and more importantly our asymptotic results do not capture the instability 
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shown in figure 9 beyond about M = 8. Indeed, figure 9 indicates instability as & 
increases. We therefore conclude that the nature of these modes as Q+- 00 is somewhat 
different. It turns out from the analysis of the following section that as $+ 00 a further 
class of mode emerges, somewhat distinct from those considered so far. 

6. Centre modes, M = O(ln1) 
Here we examine modes exhibited when the Mach number is of order n, i.e. 

M = InlM, M = O(1). (6.1) 

As noted previously, as M +  co the features of the modes exhibited at lower Mach 
numbers cease to exist. In fact the analysis of 95.5 suggests that the modes in this 
regime under present consideration are neutral. However, our numerics belie this and 
point towards the existence of centre modes, by which we mean that the eigenvalues are 
determined primarily by conditions close to the axis of the vortex, r = 0, in a manner 
similar to that of Stewartson & Brown (1984, 1985). Here, the complex wave speed 

Cl 
n2 

develops as 
c = c,+-+ 

(an expansion that can be verified a posteriori) and therefore 

ac ,+fQ@)r2}+ ... . 

In order to be consistent we must have that $,(r = 0) = 0, i.e. 

c, = 1 + q / E .  (6.4) 

We must now go on to find el in our complex wave-speed expansion. The flow is 
divided into the four regions, which are considered in turn. 

We first begin our analysis at the outer region of the flow, where r = O(1). and the 
governing equation has the form 

Using a transformation of the form 

P = P*(r) exp {lo n 2 T : M 2  dr) , 

and writing 

reduces (6.5) to 
xo = - M 2 &  + W 4 M 4 / 4 r 2 ,  

P,*, - n4xo P* = 0. 

(6.5) 

We define the critical point r", by x0(r",) = 0 and when r > Fo,xo < 0 and the 
approximate solution to (6.8) is given by 

p* = - exp { in2 lo [ - x,,]; dr} , 
[ - xolz 

where El is an unknown constant. 
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We have also assumed that [-x,]i is slightly imaginary, with its imaginary part 
positive. This condition is to ensure that the solution is bounded as r + co, otherwise 
if Im {[ - x,$> < 0 we replace i by - i in (6.9). Looking at this point from a more physical 
perspective, we require waves to propagate out from the critical layer and not in 
toward it. 

In order to be able to match (6.9) with the solution in the r < ?o region, we must first 
examine the solution of the flow in the transition layer, around Y = y". The lengthscale 
in this region turns out to be 

(6.10) 

and use of this scaling reduces our governing equation to the Airy equation, which has 
solutions of the form 

P* = 4 Ai((X;(F,))frl?) + 6 Bi((x;(?o)pl?). (6.11) 

" I  
r-?, = RInI-8, R = o(I), 

Standard analysis and matching with (6.9) yields the result 

4 = iF,. (6.12) 

In the region r < ?,,x0 > 0 and hence the WKBJ solution here is given by 

+D,exp{ -1 n z [ E - M  4r2 -2 Q0 .I" dr }} . (6.13) 
TO 

As we approach the transition layer this solution must match with (6.11) implying 

D ,  = -2iD,. (6.14) 

Here we have used the property that Bi(z) has no exponentially small component along 
the positive real axis (Berry 1989). Note that as r + 0 

4 2  
q@rx 

(6.15) p" N -- I {D, 2, exp (&2@rzn2) + D, 2, exp ( -$fMzr2nz)} ,  

where (6.16) 

z, = l/Z1. (6.17) 

F =  rlnli = o(I). (6.18) 

We now consider the lengthscale, r = O(lnl-i), by setting 

The governing equation in this region, to leading order, is given by 

(6.19) 

where = $$h,"(O)r", (6.20) 
and as previously it is necessary to use a transformation, which is of the standard type, 
i.e. 

(6.21) 
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which leads to the final form of the governing equation in this region, namely 
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P&* + n2 (6.22) 

This equation yields solutions of the form 

P** = +(c, Iv(iq2H21nlF2) + C,  K,(iq211/r21nlr2)), (6.23) 

where I,  and K,  are modified Bessel functions, written in standard form, with 

Now, as F+ cc 

(6.24) 

(6.25) 

(these results arise from the large-order large-argument behaviour of Bessel functions, 
Abramowitz & Stegun 1970, p. 378) and comparing this with (6.15), we see that in 
order for these solutions to match and taking into account (6.14), then 

C, = -2in.Z: C,. (6.26) 

Here we have that IC,I % ICJ, and thus it is admissible to neglect any exponentially 
decaying component of the I,(z) Bessel function as z + co, which must be exponentially 
smaller than the corresponding component arising from K,(z) ; an analogous procedure 
was adopted by Smith & Brown (1990). Also, we take note of the fact that as F+O 
(using the large-order small limit of the large argument property of Bessel functions, 
Abramowitz & Stegun 1970, p. 378), then 

p*a $;c2 (- ;b, v'2 1 -ve-v .-$ (2n:P, (6.27) 

where p1 = iq2Af21nl and Sterling's formula has been used to approximate the Gamma 

R = rlnl = O( I), function. Next we set 

and in this regime $ develops as 

.. $=A+ $ 
n 

1 
n = -( -EC1 +t$t(O) R2) + . . . , 

with the governing equation 

P = 0, 
42q2 + 4zq 2 9 3 ~ 2  

+n2 [ [ - CCc, + ;$,"(O) R 2 3 2 +  [ - CCC, + ;$;(O) R2] R2 

which has the solution 

where F is the hypergeometric function in standard notation, and 

s = (n2++)i, b , ~ ; +  1) = - iar ,  
Y =  #(O)/CCC~, a, = i(lnl-s)-,i, w2 = i(lnl+s)-,i, 

(6.28) 

(6.29) 

(6.30) 

(6.31) 

(6.32 a c )  

(6.32d, e) 
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(b) 

(6.33 a, 6) 

Note that this equation is very similar in form to that found by Stewartson & Capell 
(1985). This solution is valid for R = O(1) and all smaller orders, and, in particular is 
finite at R = 0 by the definition of the hypergeometric function, and therefore satisfies 
our boundary conditions at the centre of the vortex. Note, however, that although 
according to the above P = O(Rlnl+a) as R-tO whilst strictly we should have that 
P = O(Rl"l), this discrepancy can be remedied by taking higher-order terms in (6.30); 
since the above is asymptotically correct as In1 + 03, and the additional terms are of 
little consequence to our analysis (indeed they merely cause additional complication), 
we shall consider them no further. As R becomes large we have 

where (6.35a) 

(6.35b) 

and El and E2 are both power series expansions in 1/YR2, with their leading- 
order terms both unity. Matching the two large-R solutions with (6.27) requires that 
the coefficient of the growing term in (6.34), namely so, must be zero to leading order. 
Hence we see that :(In1 +s)-li; must either be a negative integer or zero, i.e. 

,ii = i(lnl+s)+N, (6.36) 
forN=0,1 ,2 . .  
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FIGURE 12. Variation of growth rate with CL for n = - 10, M = 10, fully numerical results. 

Since in our case s (and also vj is imaginary (unlike the corresponding term in 
Stewartson & Brown 1985), the above expression substituted into (6.32e and a) yields 
the leading-order complex contribution to cl, which is given by 

(6.37) 

In figure 11 (a) we show the variation of the growth rate with cc for the case n = - 5 ,  
A4 = 5 .  This figure is to be compared with figure 2(e),  computed from the full system; 
comparison between the asymptotic and fully numerical results is surprisingly good, 
considering the smallness of - n and M .  Figure 11 (bj shows the growth-rate variation, 
predicted from the analysis of this subsection, for the case n = - 10, M = 10 and is to 
be compared with the fully numerical results shown in figure 12. Again, the results are 
encouraging; in particular the magnitude and location of'the maximum growth rate is 
quite accurately predicted. 

We now present some further numerical evidence for the structure of the centre 
modes. Figure 13 shows the variation of Re{$(r = 0)) with M ,  for the (discrete) points 
n= - M ,  a = 0.7M (first mode), which points to this quantity tending to zero as M 
increases. Figure 14 shows the eigensolution for P for the particular case M =  10, 
n = - 10, a = 7, q = 0.8 (first mode). On this figure the location of the point where 
Re{ - M2$' + W4i@4/4r2} = 0 is marked with a circle. The distribution on figure 17 
strongly indicates growth in the eigensolution at values of r below this point. Further 
close inspection of the solution as Y increases indicates some relatively small-amplitude 
oscillations, in accordance with our theory above. 

Referring again to figure 11, we see that the upper neutral point is clearly seen. This 
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occurs at 01 = -n/q, the point at which a = 0 (see (6.33)). The fully numerical results 
throughout this paper all indicate that neutral conditions are attained at values of the 
parameters close to this point, as in the incompressible case. 

Additionally figure 11 shows a distinct lower neutral point. This corresponds to the 
value of a where &(O) = 0 namely a = -:q. At this location, a and b (defined by (6.33)) 
both exhibit a singularity, although it is easy to show that at this location, 
c1 = (2 -q2) /q2M2,  which is clearly real. There is some correlation with these results 
and those of the fully numerical scheme, whilst it is most remarkable that the location 
of this lower neutra: point is identical with that found in the incompressible case 
(Stewartson & Leibovich 1987), and that both the upper and lower neutral points are 
captured by (6.37). 

It is also worth noting that there is some similarity between the structure of these 
modes, and those found in the incompressible work of Stewartson & Brown (1985), 
although the particular details are different, and in our case analytic/asymptotic 
solution on the Y = O(1) scale is possible (see (6.6)), whilst Stewartson & Brown (1985) 
had to resort to a numerical approach for this scale. 

7. Conclusions 
We have mounted a systematic study of the inviscid stability of the trailing line 

vortex, starting at zero Mach number M and progressively increasing M .  We see a 
general reduction in growth rates as M increases, and indeed the results of 3Q5.4 and 
5.5 predict that the original family of modes will stabilize when M = O(lnli), specifically 
when (5.43) is satisfied. However, it is shown in $6 that when M =  O(lnl), a centre- 
mode class of instability is formed. We feel that although our numerical results (figure 
9 in particular) indicates that these modes spring from the higher-order modes at lower 
Mach numbers, as - n increases these centre modes may well become distinct from the 
original class of modes that exist at lower Mach numbers. 

A further important feature of note, and one that is observed in incompressible work 
(Leibovich & Stewartson 1983 ; Stewartson & Brown 1985) is that there is a good deal 
of numerical evidence to suggest that there exist no instabilities for a > -n/q.  Indeed, 
this is also confirmed by (6.37), noting that a is given by (6.33). This aspect is currently 
under further investigation, as are the effects of viscosity when incorporated into the 
theory. Additionally it is anticipated that non-parallel effects would be of much interest 
when incorporated into the study. 
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